Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Secret-Protected Evolution for Differentially Private Synthetic Text Generation (2510.10990v1)

Published 13 Oct 2025 in cs.CR, cs.CL, and cs.NE

Abstract: Text data has become extremely valuable on LLMs and even lead to general artificial intelligence (AGI). A lot of high-quality text in the real world is private and cannot be freely used due to privacy concerns. Therefore, differentially private (DP) synthetic text generation has been proposed, aiming to produce high-utility synthetic data while protecting sensitive information. However, existing DP synthetic text generation imposes uniform guarantees that often overprotect non-sensitive content, resulting in substantial utility loss and computational overhead. Therefore, we propose Secret-Protected Evolution (SecPE), a novel framework that extends private evolution with secret-aware protection. Theoretically, we show that SecPE satisfies $(\mathrm{p}, \mathrm{r})$-secret protection, constituting a relaxation of Gaussian DP that enables tighter utility-privacy trade-offs, while also substantially reducing computational complexity relative to baseline methods. Empirically, across the OpenReview, PubMed, and Yelp benchmarks, SecPE consistently achieves lower Fr\'echet Inception Distance (FID) and higher downstream task accuracy than GDP-based Aug-PE baselines, while requiring less noise to attain the same level of protection. Our results highlight that secret-aware guarantees can unlock more practical and effective privacy-preserving synthetic text generation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: