Papers
Topics
Authors
Recent
2000 character limit reached

Catch-Only-One: Non-Transferable Examples for Model-Specific Authorization (2510.10982v1)

Published 13 Oct 2025 in cs.LG and cs.AI

Abstract: Recent AI regulations call for data that remain useful for innovation while resistant to misuse, balancing utility with protection at the model level. Existing approaches either perturb data to make it unlearnable or retrain models to suppress transfer, but neither governs inference by unknown models, and both typically require control over training. We propose non-transferable examples (NEs), a training-free and data-agnostic input-side usage-control mechanism. We recode inputs within a model-specific low-sensitivity subspace, preserving outputs for the authorized model while reducing performance on unauthorized models through subspace misalignment. We establish formal bounds that guarantee utility for the authorized model and quantify deviation for unauthorized ones, with the Hoffman-Wielandt inequality linking degradation to spectral differences. Empirically, NEs retain performance on diverse vision backbones and state-of-the-art vision-LLMs under common preprocessing, whereas non-target models collapse even with reconstruction attempts. These results establish NEs as a practical means to preserve intended data utility while preventing unauthorized exploitation. Our project is available at https://trusted-system-lab.github.io/model-specificity

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.