Papers
Topics
Authors
Recent
2000 character limit reached

Game-Theoretic Risk-Shaped Reinforcement Learning for Safe Autonomous Driving (2510.10960v1)

Published 13 Oct 2025 in cs.RO

Abstract: Ensuring safety in autonomous driving (AD) remains a significant challenge, especially in highly dynamic and complex traffic environments where diverse agents interact and unexpected hazards frequently emerge. Traditional reinforcement learning (RL) methods often struggle to balance safety, efficiency, and adaptability, as they primarily focus on reward maximization without explicitly modeling risk or safety constraints. To address these limitations, this study proposes a novel game-theoretic risk-shaped RL (GTR2L) framework for safe AD. GTR2L incorporates a multi-level game-theoretic world model that jointly predicts the interactive behaviors of surrounding vehicles and their associated risks, along with an adaptive rollout horizon that adjusts dynamically based on predictive uncertainty. Furthermore, an uncertainty-aware barrier mechanism enables flexible modulation of safety boundaries. A dedicated risk modeling approach is also proposed, explicitly capturing both epistemic and aleatoric uncertainty to guide constrained policy optimization and enhance decision-making in complex environments. Extensive evaluations across diverse and safety-critical traffic scenarios show that GTR2L significantly outperforms state-of-the-art baselines, including human drivers, in terms of success rate, collision and violation reduction, and driving efficiency. The code is available at https://github.com/DanielHu197/GTR2L.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.