Papers
Topics
Authors
Recent
2000 character limit reached

Preference-Conditioned Multi-Objective RL for Integrated Command Tracking and Force Compliance in Humanoid Locomotion

Published 12 Oct 2025 in cs.RO | (2510.10851v1)

Abstract: Humanoid locomotion requires not only accurate command tracking for navigation but also compliant responses to external forces during human interaction. Despite significant progress, existing RL approaches mainly emphasize robustness, yielding policies that resist external forces but lack compliance-particularly challenging for inherently unstable humanoids. In this work, we address this by formulating humanoid locomotion as a multi-objective optimization problem that balances command tracking and external force compliance. We introduce a preference-conditioned multi-objective RL (MORL) framework that integrates rigid command following and compliant behaviors within a single omnidirectional locomotion policy. External forces are modeled via velocity-resistance factor for consistent reward design, and training leverages an encoder-decoder structure that infers task-relevant privileged features from deployable observations. We validate our approach in both simulation and real-world experiments on a humanoid robot. Experimental results indicate that our framework not only improves adaptability and convergence over standard pipelines, but also realizes deployable preference-conditioned humanoid locomotion.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.