Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

From Detection to Mitigation: Addressing Bias in Deep Learning Models for Chest X-Ray Diagnosis (2510.10822v1)

Published 12 Oct 2025 in cs.CV and cs.AI

Abstract: Deep learning models have shown promise in improving diagnostic accuracy from chest X-rays, but they also risk perpetuating healthcare disparities when performance varies across demographic groups. In this work, we present a comprehensive bias detection and mitigation framework targeting sex, age, and race-based disparities when performing diagnostic tasks with chest X-rays. We extend a recent CNN-XGBoost pipeline to support multi-label classification and evaluate its performance across four medical conditions. We show that replacing the final layer of CNN with an eXtreme Gradient Boosting classifier improves the fairness of the subgroup while maintaining or improving the overall predictive performance. To validate its generalizability, we apply the method to different backbones, namely DenseNet-121 and ResNet-50, and achieve similarly strong performance and fairness outcomes, confirming its model-agnostic design. We further compare this lightweight adapter training method with traditional full-model training bias mitigation techniques, including adversarial training, reweighting, data augmentation, and active learning, and find that our approach offers competitive or superior bias reduction at a fraction of the computational cost. Finally, we show that combining eXtreme Gradient Boosting retraining with active learning yields the largest reduction in bias across all demographic subgroups, both in and out of distribution on the CheXpert and MIMIC datasets, establishing a practical and effective path toward equitable deep learning deployment in clinical radiology.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.