Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DISC-GAN: Disentangling Style and Content for Cluster-Specific Synthetic Underwater Image Generation (2510.10782v1)

Published 12 Oct 2025 in cs.CV and cs.AI

Abstract: In this paper, we propose a novel framework, Disentangled Style-Content GAN (DISC-GAN), which integrates style-content disentanglement with a cluster-specific training strategy towards photorealistic underwater image synthesis. The quality of synthetic underwater images is challenged by optical due to phenomena such as color attenuation and turbidity. These phenomena are represented by distinct stylistic variations across different waterbodies, such as changes in tint and haze. While generative models are well-suited to capture complex patterns, they often lack the ability to model the non-uniform conditions of diverse underwater environments. To address these challenges, we employ K-means clustering to partition a dataset into style-specific domains. We use separate encoders to get latent spaces for style and content; we further integrate these latent representations via Adaptive Instance Normalization (AdaIN) and decode the result to produce the final synthetic image. The model is trained independently on each style cluster to preserve domain-specific characteristics. Our framework demonstrates state-of-the-art performance, obtaining a Structural Similarity Index (SSIM) of 0.9012, an average Peak Signal-to-Noise Ratio (PSNR) of 32.5118 dB, and a Frechet Inception Distance (FID) of 13.3728.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.