Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning-Augmented Streaming Algorithms for Correlation Clustering (2510.10705v1)

Published 12 Oct 2025 in cs.DS and cs.LG

Abstract: We study streaming algorithms for Correlation Clustering. Given a graph as an arbitrary-order stream of edges, with each edge labeled as positive or negative, the goal is to partition the vertices into disjoint clusters, such that the number of disagreements is minimized. In this paper, we give the first learning-augmented streaming algorithms for the problem on both complete and general graphs, improving the best-known space-approximation tradeoffs. Based on the works of Cambus et al. (SODA'24) and Ahn et al. (ICML'15), our algorithms use the predictions of pairwise distances between vertices provided by a predictor. For complete graphs, our algorithm achieves a better-than-$3$ approximation under good prediction quality, while using $\tilde{O}(n)$ total space. For general graphs, our algorithm achieves an $O(\log |E-|)$ approximation under good prediction quality using $\tilde{O}(n)$ total space, improving the best-known non-learning algorithm in terms of space efficiency. Experimental results on synthetic and real-world datasets demonstrate the superiority of our proposed algorithms over their non-learning counterparts.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.