Papers
Topics
Authors
Recent
2000 character limit reached

High-Dimensional Learning Dynamics of Quantized Models with Straight-Through Estimator (2510.10693v1)

Published 12 Oct 2025 in stat.ML, cond-mat.dis-nn, cs.AI, cs.LG, math.ST, and stat.TH

Abstract: Quantized neural network training optimizes a discrete, non-differentiable objective. The straight-through estimator (STE) enables backpropagation through surrogate gradients and is widely used. While previous studies have primarily focused on the properties of surrogate gradients and their convergence, the influence of quantization hyperparameters, such as bit width and quantization range, on learning dynamics remains largely unexplored. We theoretically show that in the high-dimensional limit, STE dynamics converge to a deterministic ordinary differential equation. This reveals that STE training exhibits a plateau followed by a sharp drop in generalization error, with plateau length depending on the quantization range. A fixed-point analysis quantifies the asymptotic deviation from the unquantized linear model. We also extend analytical techniques for stochastic gradient descent to nonlinear transformations of weights and inputs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.