Simpliflow: A Lightweight Open-Source Framework for Rapid Creation and Deployment of Generative Agentic AI Workflows (2510.10675v1)
Abstract: Generative Agentic AI systems are emerging as a powerful paradigm for automating complex, multi-step tasks. However, many existing frameworks for building these systems introduce significant complexity, a steep learning curve, and substantial boilerplate code, hindering rapid prototyping and deployment. This paper introduces simpliflow, a lightweight, open-source Python framework designed to address these challenges. simpliflow enables the rapid development and orchestration of linear, deterministic agentic workflows through a declarative, JSON-based configuration. Its modular architecture decouples agent management, workflow execution, and post-processing, promoting ease of use and extensibility. By integrating with LiteLLM, it supports over 100 LLMs out-of-the-box. We present the architecture, operational flow, and core features of simpliflow, demonstrating its utility through diverse use cases ranging from software development simulation to real-time system interaction. A comparative analysis with prominent frameworks like LangChain and AutoGen highlights simpliflow's unique position as a tool optimized for simplicity, control, and speed in deterministic workflow environments.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.