Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Information-Computation Tradeoffs for Noiseless Linear Regression with Oblivious Contamination (2510.10665v1)

Published 12 Oct 2025 in cs.DS, math.ST, stat.ML, and stat.TH

Abstract: We study the task of noiseless linear regression under Gaussian covariates in the presence of additive oblivious contamination. Specifically, we are given i.i.d.\ samples from a distribution $(x, y)$ on $\mathbb{R}d \times \mathbb{R}$ with $x \sim \mathcal{N}(0,\mathbf{I}_d)$ and $y = x\top \beta + z$, where $z$ is drawn independently of $x$ from an unknown distribution $E$. Moreover, $z$ satisfies $\mathbb{P}_E[z = 0] = \alpha>0$. The goal is to accurately recover the regressor $\beta$ to small $\ell_2$-error. Ignoring computational considerations, this problem is known to be solvable using $O(d/\alpha)$ samples. On the other hand, the best known polynomial-time algorithms require $\Omega(d/\alpha2)$ samples. Here we provide formal evidence that the quadratic dependence in $1/\alpha$ is inherent for efficient algorithms. Specifically, we show that any efficient Statistical Query algorithm for this task requires VSTAT complexity at least $\tilde{\Omega}(d{1/2}/\alpha2)$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.