Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

You're Not Gonna Believe This: A Computational Analysis of Factual Appeals and Sourcing in Partisan News (2510.10658v1)

Published 12 Oct 2025 in cs.CL

Abstract: While media bias is widely studied, the epistemic strategies behind factual reporting remain computationally underexplored. This paper analyzes these strategies through a large-scale comparison of CNN and Fox News. To isolate reporting style from topic selection, we employ an article matching strategy to compare reports on the same events and apply the FactAppeal framework to a corpus of over 470K articles covering two highly politicized periods: the COVID-19 pandemic and the Israel-Hamas war. We find that CNN's reporting contains more factual statements and is more likely to ground them in external sources. The outlets also exhibit sharply divergent sourcing patterns: CNN builds credibility by citing Experts} and Expert Documents, constructing an appeal to formal authority, whereas Fox News favors News Reports and direct quotations. This work quantifies how partisan outlets use systematically different epistemic strategies to construct reality, adding a new dimension to the study of media bias.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.