Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement Learning-based Dynamic Adaptation for Sampling-Based Motion Planning in Agile Autonomous Driving

Published 12 Oct 2025 in cs.RO | (2510.10567v1)

Abstract: Sampling-based trajectory planners are widely used for agile autonomous driving due to their ability to generate fast, smooth, and kinodynamically feasible trajectories. However, their behavior is often governed by a cost function with manually tuned, static weights, which forces a tactical compromise that is suboptimal across the wide range of scenarios encountered in a race. To address this shortcoming, we propose using a Reinforcement Learning (RL) agent as a high-level behavioral selector that dynamically switches the cost function parameters of an analytical, low-level trajectory planner during runtime. We show the effectiveness of our approach in simulation in an autonomous racing environment where our RL-based planner achieved 0% collision rate while reducing overtaking time by up to 60% compared to state-of-the-art static planners. Our new agent now dynamically switches between aggressive and conservative behaviors, enabling interactive maneuvers unattainable with static configurations. These results demonstrate that integrating reinforcement learning as a high-level selector resolves the inherent trade-off between safety and competitiveness in autonomous racing planners. The proposed methodology offers a pathway toward adaptive yet interpretable motion planning for broader autonomous driving applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.