Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MRS-YOLO Railroad Transmission Line Foreign Object Detection Based on Improved YOLO11 and Channel Pruning (2510.10553v1)

Published 12 Oct 2025 in cs.CV

Abstract: Aiming at the problems of missed detection, false detection and low detection efficiency in transmission line foreign object detection under railway environment, we proposed an improved algorithm MRS-YOLO based on YOLO11. Firstly, a multi-scale Adaptive Kernel Depth Feature Fusion (MAKDF) module is proposed and fused with the C3k2 module to form C3k2_MAKDF, which enhances the model's feature extraction capability for foreign objects of different sizes and shapes. Secondly, a novel Re-calibration Feature Fusion Pyramid Network (RCFPN) is designed as a neck structure to enhance the model's ability to integrate and utilize multi-level features effectively. Then, Spatial and Channel Reconstruction Detect Head (SC_Detect) based on spatial and channel preprocessing is designed to enhance the model's overall detection performance. Finally, the channel pruning technique is used to reduce the redundancy of the improved model, drastically reduce Parameters and Giga Floating Point Operations Per Second (GFLOPs), and improve the detection efficiency. The experimental results show that the mAP50 and mAP50:95 of the MRS-YOLO algorithm proposed in this paper are improved to 94.8% and 86.4%, respectively, which are 0.7 and 2.3 percentage points higher compared to the baseline, while Parameters and GFLOPs are reduced by 44.2% and 17.5%, respectively. It is demonstrated that the improved algorithm can be better applied to the task of foreign object detection in railroad transmission lines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: