Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MCE: Towards a General Framework for Handling Missing Modalities under Imbalanced Missing Rates (2510.10534v1)

Published 12 Oct 2025 in cs.CV, cs.LG, and cs.MM

Abstract: Multi-modal learning has made significant advances across diverse pattern recognition applications. However, handling missing modalities, especially under imbalanced missing rates, remains a major challenge. This imbalance triggers a vicious cycle: modalities with higher missing rates receive fewer updates, leading to inconsistent learning progress and representational degradation that further diminishes their contribution. Existing methods typically focus on global dataset-level balancing, often overlooking critical sample-level variations in modality utility and the underlying issue of degraded feature quality. We propose Modality Capability Enhancement (MCE) to tackle these limitations. MCE includes two synergistic components: i) Learning Capability Enhancement (LCE), which introduces multi-level factors to dynamically balance modality-specific learning progress, and ii) Representation Capability Enhancement (RCE), which improves feature semantics and robustness through subset prediction and cross-modal completion tasks. Comprehensive evaluations on four multi-modal benchmarks show that MCE consistently outperforms state-of-the-art methods under various missing configurations. The journal preprint version is now available at https://doi.org/10.1016/j.patcog.2025.112591. Our code is available at https://github.com/byzhaoAI/MCE.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com