Papers
Topics
Authors
Recent
2000 character limit reached

Unified Open-World Segmentation with Multi-Modal Prompts (2510.10524v1)

Published 12 Oct 2025 in cs.CV

Abstract: In this work, we present COSINE, a unified open-world segmentation model that consolidates open-vocabulary segmentation and in-context segmentation with multi-modal prompts (e.g., text and image). COSINE exploits foundation models to extract representations for an input image and corresponding multi-modal prompts, and a SegDecoder to align these representations, model their interaction, and obtain masks specified by input prompts across different granularities. In this way, COSINE overcomes architectural discrepancies, divergent learning objectives, and distinct representation learning strategies of previous pipelines for open-vocabulary segmentation and in-context segmentation. Comprehensive experiments demonstrate that COSINE has significant performance improvements in both open-vocabulary and in-context segmentation tasks. Our exploratory analyses highlight that the synergistic collaboration between using visual and textual prompts leads to significantly improved generalization over single-modality approaches.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: