Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

SuperEx: Enhancing Indoor Mapping and Exploration using Non-Line-of-Sight Perception (2510.10506v1)

Published 12 Oct 2025 in cs.RO and cs.CV

Abstract: Efficient exploration and mapping in unknown indoor environments is a fundamental challenge, with high stakes in time-critical settings. In current systems, robot perception remains confined to line-of-sight; occluded regions remain unknown until physically traversed, leading to inefficient exploration when layouts deviate from prior assumptions. In this work, we bring non-line-of-sight (NLOS) sensing to robotic exploration. We leverage single-photon LiDARs, which capture time-of-flight histograms that encode the presence of hidden objects - allowing robots to look around blind corners. Recent single-photon LiDARs have become practical and portable, enabling deployment beyond controlled lab settings. Prior NLOS works target 3D reconstruction in static, lab-based scenarios, and initial efforts toward NLOS-aided navigation consider simplified geometries. We introduce SuperEx, a framework that integrates NLOS sensing directly into the mapping-exploration loop. SuperEx augments global map prediction with beyond-line-of-sight cues by (i) carving empty NLOS regions from timing histograms and (ii) reconstructing occupied structure via a two-step physics-based and data-driven approach that leverages structural regularities. Evaluations on complex simulated maps and the real-world KTH Floorplan dataset show a 12% gain in mapping accuracy under < 30% coverage and improved exploration efficiency compared to line-of-sight baselines, opening a path to reliable mapping beyond direct visibility.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.