Papers
Topics
Authors
Recent
2000 character limit reached

UltraLLaDA: Scaling the Context Length to 128K for Diffusion Large Language Models (2510.10481v1)

Published 12 Oct 2025 in cs.CL and cs.AI

Abstract: Diffusion LLMs have attracted growing interest, with plenty of recent work emphasizing their great potential in various downstream tasks; yet the long-context behavior of diffusion LLMs remains largely uncharted. We present a case study of post-training techniques for extending the context window of diffusion LLMs (i.e., LLaDA) without retraining from scratch. We show that a simple modification to the standard Rotary Positional Embeddings (RoPE) extension effectively accommodates the probabilistic modeling inherent in the diffusion process, enabling stable scaling to longer context ranges. We further compare masking strategies used during post-training and analyze their impact on optimization stability and long-range recall. Instantiating these insights, we introduce UltraLLaDA, a diffusion LLM with a 128K-token context window that, in our empirical evaluation on long-context tasks, significantly outperforms training-free baselines. Our experimental results highlight the special positional extension as a key lever for scaling diffusion LLMs to extended contexts and offer practical guidance for practitioners seeking 128K-scale context via efficient post-training.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.