Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Testing and Enhancing Multi-Agent Systems for Robust Code Generation (2510.10460v1)

Published 12 Oct 2025 in cs.SE and cs.AI

Abstract: Multi-agent systems (MASs) have emerged as a promising paradigm for automated code generation, demonstrating impressive performance on established benchmarks by decomposing complex coding tasks across specialized agents with different roles. Despite their prosperous development and adoption, their robustness remains pressingly under-explored, raising critical concerns for real-world deployment. This paper presents the first comprehensive study examining the robustness of MASs for code generation through a fuzzing-based testing approach. By designing a fuzzing pipeline incorporating semantic-preserving mutation operators and a novel fitness function, we assess mainstream MASs across multiple datasets and LLMs. Our findings reveal substantial robustness flaws of various popular MASs: they fail to solve 7.9%-83.3% of problems they initially resolved successfully after applying the semantic-preserving mutations. Through comprehensive failure analysis, we identify a common yet largely overlooked cause of the robustness issue: miscommunications between planning and coding agents, where plans lack sufficient detail and coding agents misinterpret intricate logic, aligning with the challenges inherent in a multi-stage information transformation process. Accordingly, we also propose a repairing method that encompasses multi-prompt generation and introduces a new monitor agent to address this issue. Evaluation shows that our repairing method effectively enhances the robustness of MASs by solving 40.0%-88.9% of identified failures. Our work uncovers critical robustness flaws in MASs and provides effective mitigation strategies, contributing essential insights for developing more reliable MASs for code generation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.