Papers
Topics
Authors
Recent
2000 character limit reached

RECON: Reasoning with Condensation for Efficient Retrieval-Augmented Generation (2510.10448v1)

Published 12 Oct 2025 in cs.CL

Abstract: Retrieval-augmented generation (RAG) systems trained using reinforcement learning (RL) with reasoning are hampered by inefficient context management, where long, noisy retrieved documents increase costs and degrade performance. We introduce RECON (REasoning with CONdensation), a framework that integrates an explicit summarization module to compress evidence within the reasoning loop. Our summarizer is trained via a two-stage process: relevance pretraining on QA datasets, followed by multi-aspect distillation from proprietary LLMs to ensure factuality and clarity. Integrated into the Search-R1 pipeline, RECON reduces total context length by 35\%, leading to improved training speed and inference latency, while simultaneously improving RAG performance on downstream QA benchmarks. Notably, it boosts the average EM score of the 3B model by 14.5\% and the 7B model by 3.0\%, showing particular strength in multi-hop QA. RECON demonstrates that learned context compression is essential for building practical, scalable, and performant RAG systems. Our code implementation is made available at https://github.com/allfornancy/RECON.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.