Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Taming a Retrieval Framework to Read Images in Humanlike Manner for Augmenting Generation of MLLMs (2510.10426v1)

Published 12 Oct 2025 in cs.CV and cs.AI

Abstract: Multimodal LLMs (MLLMs) often fail in fine-grained visual question answering, producing hallucinations about object identities, positions, and relations because textual queries are not explicitly anchored to visual referents. Retrieval-augmented generation (RAG) alleviates some errors, but it fails to align with human-like processing at both the retrieval and augmentation levels. Specifically, it focuses only on global-level image information but lacks local detail and limits reasoning about fine-grained interactions. To overcome this limitation, we present Human-Like Retrieval-Augmented Generation (HuLiRAG), a framework that stages multimodal reasoning as a ``what--where--reweight'' cascade. Queries are first anchored to candidate referents via open-vocabulary detection (what), then spatially resolved with SAM-derived masks to recover fine-grained precision (where), and adaptively prioritized through the trade-off between local and global alignment (reweight). Mask-guided fine-tuning further injects spatial evidence into the generation process, transforming grounding from a passive bias into an explicit constraint on answer formulation. Extensive experiments demonstrate that this human-like cascade improves grounding fidelity and factual consistency while reducing hallucinations, advancing multimodal question answering toward trustworthy reasoning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube