Papers
Topics
Authors
Recent
2000 character limit reached

Softmax $\geq$ Linear: Transformers may learn to classify in-context by kernel gradient descent (2510.10425v1)

Published 12 Oct 2025 in cs.LG

Abstract: The remarkable ability of transformers to learn new concepts solely by reading examples within the input prompt, termed in-context learning (ICL), is a crucial aspect of intelligent behavior. Here, we focus on understanding the learning algorithm transformers use to learn from context. Existing theoretical work, often based on simplifying assumptions, has primarily focused on linear self-attention and continuous regression tasks, finding transformers can learn in-context by gradient descent. Given that transformers are typically trained on discrete and complex tasks, we bridge the gap from this existing work to the setting of classification, with non-linear (importantly, softmax) activation. We find that transformers still learn to do gradient descent in-context, though on functionals in the kernel feature space and with a context-adaptive learning rate in the case of softmax transformer. These theoretical findings suggest a greater adaptability to context for softmax attention, which we empirically verify and study through ablations. Overall, we hope this enhances theoretical understanding of in-context learning algorithms in more realistic settings, pushes forward our intuitions and enables further theory bridging to larger models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.