Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PrediQL: Automated Testing of GraphQL APIs with LLMs (2510.10407v1)

Published 12 Oct 2025 in cs.CR and cs.SE

Abstract: GraphQL's flexible query model and nested data dependencies expose APIs to complex, context-dependent vulnerabilities that are difficult to uncover using conventional testing tools. Existing fuzzers either rely on random payload generation or rigid mutation heuristics, failing to adapt to the dynamic structures of GraphQL schemas and responses. We present PrediQL, the first retrieval-augmented, LLM-guided fuzzer for GraphQL APIs. PrediQL combines LLM reasoning with adaptive feedback loops to generate semantically valid and diverse queries. It models the choice of fuzzing strategy as a multi-armed bandit problem, balancing exploration of new query structures with exploitation of past successes. To enhance efficiency, PrediQL retrieves and reuses execution traces, schema fragments, and prior errors, enabling self-correction and progressive learning across test iterations. Beyond input generation, PrediQL integrates a context-aware vulnerability detector that uses LLM reasoning to analyze responses, interpreting data values, error messages, and status codes to identify issues such as injection flaws, access-control bypasses, and information disclosure. Our evaluation across open-source and benchmark GraphQL APIs shows that PrediQL achieves significantly higher coverage and vulnerability discovery rates compared to state-of-the-art baselines. These results demonstrate that combining retrieval-augmented reasoning with adaptive fuzzing can transform API security testing from reactive enumeration to intelligent exploration.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.