Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FLAMMABLE: A Multi-Model Federated Learning Framework with Multi-Model Engagement and Adaptive Batch Sizes (2510.10380v1)

Published 12 Oct 2025 in cs.DC and cs.LG

Abstract: Multi-Model Federated Learning (MMFL) is an emerging direction in Federated Learning (FL) where multiple models are trained in parallel, generally on various datasets. Optimizing the models' accuracies and training times in the MMFL setting requires adapting to data and system heterogeneity across clients as in single-model FL; these challenges are amplified in the MMFL setting due to additional heterogeneity across models. Neither existing solutions nor na\"ive extensions of single-model FL frameworks efficiently address these challenges. To bridge this gap, we propose FLAMMABLE, a comprehensive MMFL training framework. FLAMMABLE optimizes model training by intelligently adapting client batch sizes while engaging them to train multiple carefully chosen models, depending on their system capabilities, in each training round. To evaluate FLAMMABLE, we develop the first benchmark platform for the MMFL setting, which may enable future reproducible MMFL research. Extensive evaluations on multiple datasets and models show that FLAMMABLE boosts the MMFL time-to-accuracy performance by 1.1$\sim$10.0$\times$ while improving the final model accuracy by 1.3$\sim$5.4\% compared to several known baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.