Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Self-Supervised Multi-Scale Transformer with Attention-Guided Fusion for Efficient Crack Detection (2510.10378v1)

Published 12 Oct 2025 in cs.CV

Abstract: Pavement crack detection has long depended on costly and time-intensive pixel-level annotations, which limit its scalability for large-scale infrastructure monitoring. To overcome this barrier, this paper examines the feasibility of achieving effective pixel-level crack segmentation entirely without manual annotations. Building on this objective, a fully self-supervised framework, Crack-Segmenter, is developed, integrating three complementary modules: the Scale-Adaptive Embedder (SAE) for robust multi-scale feature extraction, the Directional Attention Transformer (DAT) for maintaining linear crack continuity, and the Attention-Guided Fusion (AGF) module for adaptive feature integration. Through evaluations on ten public datasets, Crack-Segmenter consistently outperforms 13 state-of-the-art supervised methods across all major metrics, including mean Intersection over Union (mIoU), Dice score, XOR, and Hausdorff Distance (HD). These findings demonstrate that annotation-free crack detection is not only feasible but also superior, enabling transportation agencies and infrastructure managers to conduct scalable and cost-effective monitoring. This work advances self-supervised learning and motivates pavement cracks detection research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: