Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Vision4PPG: Emergent PPG Analysis Capability of Vision Foundation Models for Vital Signs like Blood Pressure (2510.10366v1)

Published 11 Oct 2025 in cs.CV and cs.LG

Abstract: Photoplethysmography (PPG) sensor in wearable and clinical devices provides valuable physiological insights in a non-invasive and real-time fashion. Specialized Foundation Models (FM) or repurposed time-series FMs are used to benchmark physiological tasks. Our experiments with fine-tuning FMs reveal that Vision FM (VFM) can also be utilized for this purpose and, in fact, surprisingly leads to state-of-the-art (SOTA) performance on many tasks, notably blood pressure estimation. We leverage VFMs by simply transforming one-dimensional PPG signals into image-like two-dimensional representations, such as the Short-Time Fourier transform (STFT). Using the latest VFMs, such as DINOv3 and SIGLIP-2, we achieve promising performance on other vital signs and blood lab measurement tasks as well. Our proposal, Vision4PPG, unlocks a new class of FMs to achieve SOTA performance with notable generalization to other 2D input representations, including STFT phase and recurrence plots. Our work improves upon prior investigations of vision models for PPG by conducting a comprehensive study, comparing them to state-of-the-art time-series FMs, and demonstrating the general PPG processing ability by reporting results on six additional tasks. Thus, we provide clinician-scientists with a new set of powerful tools that is also computationally efficient, thanks to Parameter-Efficient Fine-Tuning (PEFT) techniques.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.