Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On some practical challenges of conformal prediction (2510.10324v1)

Published 11 Oct 2025 in stat.ML and cs.LG

Abstract: Conformal prediction is a model-free machine learning method for creating prediction regions with a guaranteed coverage probability level. However, a data scientist often faces three challenges in practice: (i) the determination of a conformal prediction region is only approximate, jeopardizing the finite-sample validity of prediction, (ii) the computation required could be prohibitively expensive, and (iii) the shape of a conformal prediction region is hard to control. This article offers new insights into the relationship among the monotonicity of the non-conformity measure, the monotonicity of the plausibility function, and the exact determination of a conformal prediction region. Based on these new insights, we propose a simple strategy to alleviate the three challenges simultaneously.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 10 likes.

Upgrade to Pro to view all of the tweets about this paper: