Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Robust Exploratory Stopping under Ambiguity in Reinforcement Learning (2510.10260v1)

Published 11 Oct 2025 in math.OC, math.PR, q-fin.MF, and stat.ML

Abstract: We propose and analyze a continuous-time robust reinforcement learning framework for optimal stopping problems under ambiguity. In this framework, an agent chooses a stopping rule motivated by two objectives: robust decision-making under ambiguity and learning about the unknown environment. Here, ambiguity refers to considering multiple probability measures dominated by a reference measure, reflecting the agent's awareness that the reference measure representing her learned belief about the environment would be erroneous. Using the $g$-expectation framework, we reformulate an optimal stopping problem under ambiguity as an entropy-regularized optimal control problem under ambiguity, with Bernoulli distributed controls to incorporate exploration into the stopping rules. We then derive the optimal Bernoulli distributed control characterized by backward stochastic differential equations. Moreover, we establish a policy iteration theorem and implement it as a reinforcement learning algorithm. Numerical experiments demonstrate the convergence and robustness of the proposed algorithm across different levels of ambiguity and exploration.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: