Papers
Topics
Authors
Recent
2000 character limit reached

A3RNN: Bi-directional Fusion of Bottom-up and Top-down Process for Developmental Visual Attention in Robots (2510.10221v1)

Published 11 Oct 2025 in cs.RO and cs.AI

Abstract: This study investigates the developmental interaction between top-down (TD) and bottom-up (BU) visual attention in robotic learning. Our goal is to understand how structured, human-like attentional behavior emerges through the mutual adaptation of TD and BU mechanisms over time. To this end, we propose a novel attention model $A3 RNN$ that integrates predictive TD signals and saliency-based BU cues through a bi-directional attention architecture. We evaluate our model in robotic manipulation tasks using imitation learning. Experimental results show that attention behaviors evolve throughout training, from saliency-driven exploration to prediction-driven direction. Initially, BU attention highlights visually salient regions, which guide TD processes, while as learning progresses, TD attention stabilizes and begins to reshape what is perceived as salient. This trajectory reflects principles from cognitive science and the free-energy framework, suggesting the importance of self-organizing attention through interaction between perception and internal prediction. Although not explicitly optimized for stability, our model exhibits more coherent and interpretable attention patterns than baselines, supporting the idea that developmental mechanisms contribute to robust attention formation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.