PIXEL: Adaptive Steering Via Position-wise Injection with eXact Estimated Levels under Subspace Calibration (2510.10205v1)
Abstract: Reliable behavior control is central to deploying LLMs on the web. Activation steering offers a tuning-free route to align attributes (e.g., truthfulness) that ensure trustworthy generation. Prevailing approaches rely on coarse heuristics and lack a principled account of where to steer and how strongly to intervene. To this end, we propose Position-wise Injection with eXact Estimated Levels (PIXEL), a position-wise activation steering framework that, in contrast to prior work, learns a property-aligned subspace from dual views (tail-averaged and end-token) and selects intervention strength via a constrained geometric objective with a closed-form solution, thereby adapting to token-level sensitivity without global hyperparameter tuning. PIXEL further performs sample-level orthogonal residual calibration to refine the global attribute direction and employs a lightweight position-scanning routine to identify receptive injection sites. We additionally provide representation-level guarantees for the minimal-intervention rule, supporting reliable alignment. Across diverse models and evaluation paradigms, PIXEL consistently improves attribute alignment while preserving model general capabilities, offering a practical and principled method for LLMs' controllable generation. Our code is available at https://github.com/V1centNevwake/PIXEL-Adaptive-Steering
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.