Papers
Topics
Authors
Recent
2000 character limit reached

ViConEx-Med: Visual Concept Explainability via Multi-Concept Token Transformer for Medical Image Analysis

Published 11 Oct 2025 in cs.CV | (2510.10174v1)

Abstract: Concept-based models aim to explain model decisions with human-understandable concepts. However, most existing approaches treat concepts as numerical attributes, without providing complementary visual explanations that could localize the predicted concepts. This limits their utility in real-world applications and particularly in high-stakes scenarios, such as medical use-cases. This paper proposes ViConEx-Med, a novel transformer-based framework for visual concept explainability, which introduces multi-concept learnable tokens to jointly predict and localize visual concepts. By leveraging specialized attention layers for processing visual and text-based concept tokens, our method produces concept-level localization maps while maintaining high predictive accuracy. Experiments on both synthetic and real-world medical datasets demonstrate that ViConEx-Med outperforms prior concept-based models and achieves competitive performance with black-box models in terms of both concept detection and localization precision. Our results suggest a promising direction for building inherently interpretable models grounded in visual concepts. Code is publicly available at https://github.com/CristianoPatricio/viconex-med.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.