Stroke Locus Net: Occluded Vessel Localization from MRI Modalities (2510.10155v1)
Abstract: A key challenge in ischemic stroke diagnosis using medical imaging is the accurate localization of the occluded vessel. Current machine learning methods in focus primarily on lesion segmentation, with limited work on vessel localization. In this study, we introduce Stroke Locus Net, an end-to-end deep learning pipeline for detection, segmentation, and occluded vessel localization using only MRI scans. The proposed system combines a segmentation branch using nnUNet for lesion detection with an arterial atlas for vessel mapping and identification, and a generation branch using pGAN to synthesize MRA images from MRI. Our implementation demonstrates promising results in localizing occluded vessels on stroke-affected T1 MRI scans, with potential for faster and more informed stroke diagnosis.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.