Papers
Topics
Authors
Recent
Search
2000 character limit reached

DiffHeads: Differential Analysis and Inference-Time Masking of Bias Heads in Large Language Models

Published 11 Oct 2025 in cs.CL and cs.AI | (2510.10142v1)

Abstract: LLMs increasingly mediate decisions in domains where unfair treatment of demographic groups is unacceptable. Existing work probes when biased outputs appear, but gives little insight into the mechanisms that generate them, leaving existing mitigations largely fragile. In this paper, we conduct a systematic investigation LLM unfairness and propose DiffHeads, a lightweight debiasing framework for LLMs. We first compare Direct-Answer (DA) prompting to Chain-of-Thought (CoT) prompting across eight representative open- and closed-source LLMs. DA will trigger the nature bias part of LLM and improve measured unfairness by 534.5%-391.9% in both one-turn and two-turn dialogues. Next, we define a token-to-head contribution score that traces each token's influence back to individual attention heads. This reveals a small cluster of bias heads that activate under DA but stay largely dormant with CoT, providing the first causal link between prompting strategy and bias emergence. Finally, building on this insight, we propose DiffHeads that identifies bias heads through differential activation analysis between DA and CoT, and selectively masks only those heads. DiffHeads reduces unfairness by 49.4%, and 40.3% under DA and CoT, respectively, without harming model utility.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.