Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Hybrid Multimodal Graph Index (HMGI): A Comprehensive Framework for Integrated Relational and Vector Search (2510.10123v1)

Published 11 Oct 2025 in cs.DB and cs.LG

Abstract: The proliferation of complex, multimodal datasets has exposed a critical gap between the capabilities of specialized vector databases and traditional graph databases. While vector databases excel at semantic similarity search, they lack the capacity for deep relational querying. Conversely, graph databases master complex traversals but are not natively optimized for high-dimensional vector search. This paper introduces the Hybrid Multimodal Graph Index (HMGI), a novel framework designed to bridge this gap by creating a unified system for efficient, hybrid queries on multimodal data. HMGI leverages the native graph database architecture and integrated vector search capabilities, exemplified by platforms like Neo4j, to combine Approximate Nearest Neighbor Search (ANNS) with expressive graph traversal queries. Key innovations of the HMGI framework include modality-aware partitioning of embeddings to optimize index structure and query performance, and a system for adaptive, low-overhead index updates to support dynamic data ingestion, drawing inspiration from the architectural principles of systems like TigerVector. By integrating semantic similarity search directly with relational context, HMGI aims to outperform pure vector databases like Milvus in complex, relationship-heavy query scenarios and achieve sub-linear query times for hybrid tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: