Papers
Topics
Authors
Recent
2000 character limit reached

Multi Class Parkinsons Disease Detection Based on Finger Tapping Using Attention-Enhanced CNN BiLSTM (2510.10121v1)

Published 11 Oct 2025 in cs.CV

Abstract: Effective clinical management and intervention development depend on accurate evaluation of Parkinsons disease (PD) severity. Many researchers have worked on developing gesture-based PD recognition systems; however, their performance accuracy is not satisfactory. In this study, we propose a multi-class Parkinson Disease detection system based on finger tapping using an attention-enhanced CNN BiLSTM. We collected finger tapping videos and derived temporal, frequency, and amplitude based features from wrist and hand movements. Then, we proposed a hybrid deep learning framework integrating CNN, BiLSTM, and attention mechanisms for multi-class PD severity classification from video-derived motion features. First, the input sequence is reshaped and passed through a Conv1D MaxPooling block to capture local spatial dependencies. The resulting feature maps are fed into a BiLSTM layer to model temporal dynamics. An attention mechanism focuses on the most informative temporal features, producing a context vector that is further processed by a second BiLSTM layer. CNN-derived features and attention-enhanced BiLSTM outputs are concatenated, followed by dense and dropout layers, before the final softmax classifier outputs the predicted PD severity level. The model demonstrated strong performance in distinguishing between the five severity classes, suggesting that integrating spatial temporal representations with attention mechanisms can improve automated PD severity detection, making it a promising non-invasive tool to support clinicians in PD monitoring and progression tracking.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.