Papers
Topics
Authors
Recent
2000 character limit reached

CLMN: Concept based Language Models via Neural Symbolic Reasoning (2510.10063v1)

Published 11 Oct 2025 in cs.CL and cs.AI

Abstract: Deep learning has advanced NLP, but interpretability remains limited, especially in healthcare and finance. Concept bottleneck models tie predictions to human concepts in vision, but NLP versions either use binary activations that harm text representations or latent concepts that weaken semantics, and they rarely model dynamic concept interactions such as negation and context. We introduce the Concept LLM Network (CLMN), a neural-symbolic framework that keeps both performance and interpretability. CLMN represents concepts as continuous, human-readable embeddings and applies fuzzy-logic reasoning to learn adaptive interaction rules that state how concepts affect each other and the final decision. The model augments original text features with concept-aware representations and automatically induces interpretable logic rules. Across multiple datasets and pre-trained LLMs, CLMN achieves higher accuracy than existing concept-based methods while improving explanation quality. These results show that integrating neural representations with symbolic reasoning in a unified concept space can yield practical, transparent NLP systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.