Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Waves of Imagination: Unconditional Spectrogram Generation using Diffusion Architectures (2510.10044v1)

Published 11 Oct 2025 in cs.NI

Abstract: The growing demand for effective spectrum management and interference mitigation in shared bands, such as the Citizens Broadband Radio Service (CBRS), requires robust radar detection algorithms to protect the military transmission from interference due to commercial wireless transmission. These algorithms, in turn, depend on large, diverse, and carefully labeled spectrogram datasets. However, collecting and annotating real-world radio frequency (RF) spectrogram data remains a significant challenge, as radar signals are rare, and their occurrences are infrequent. This challenge makes the creation of balanced datasets difficult, limiting the performance and generalizability of AI models in this domain. To address this critical issue, we propose a diffusion-based generative model for synthesizing realistic and diverse spectrograms of five distinct categories that integrate LTE, 5G, and radar signals within the CBRS band. We conduct a structural and statistical fidelity analysis of the generated spectrograms using widely accepted evaluation metrics Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR), to quantify their divergence from the training data. Furthermore, we demonstrate that pre-training on the generated spectrograms significantly improves training efficiency on a real-world radar detection task by enabling $51.5\%$ faster convergence.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.