Failure-Driven Workflow Refinement (2510.10035v1)
Abstract: Optimizing LLM-based workflows is typically formulated as a global search, where candidate workflows are evaluated based on a scalar metric. This paradigm, however, suffers from a critical flaw: information collapse. By reducing rich, multi-step execution traces to simple success/failure signals, existing methods are rendered blind to the underlying structure of failures, fundamentally preventing them from modeling the workflow's failure distribution. We reconceptualize this challenge as a distributional problem. We propose a new paradigm where the optimization goal is not to maximize a scalar score, but to directly minimize a workflow's Expected Failure Mass, i.e., the integral of its failure probability density function defined over a high-dimensional Failure Signature Space (FSS). This distributional lens allows us to move from inefficient, zero-order optimization to a principled, gradient-like descent on the failure landscape itself. We introduce CE-Graph, a framework that operationalizes this paradigm through a novel, failure-driven refinement process. CE-Graph approximates the failure distribution from a pool of counterexamples, identifies its densest regions as recurring failure modes, and applies targeted, operator-constrained graph edits via a Propose-and-Verify mechanism to greedily reduce the failure mass. On math, code, and QA benchmarks, our CE-Graph achieves higher robustness at a significantly lower cost than strong baselines. This suggests that a system's reliability emerges not from avoiding failures, but from systematically learning and reshaping the geometric structure of its failure distributions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.