Papers
Topics
Authors
Recent
2000 character limit reached

Beyond the limitation of a single query: Train your LLM for query expansion with Reinforcement Learning

Published 11 Oct 2025 in cs.CL, cs.AI, and cs.IR | (2510.10009v1)

Abstract: Reasoning-augmented search agents, such as Search-R1, are trained to reason, search, and generate the final answer iteratively. Nevertheless, due to their limited capabilities in reasoning and search, their performance on multi-hop QA benchmarks remains far from satisfactory. To handle complex or compound queries, we train an LLM-based search agent with the native capability of query expansion through reinforcement learning. In each turn, our search agent proposes several query variants, which are searched simultaneously to cover more relevant information. Meanwhile, given limited post-training data and computing resources, it is very challenging for a search agent to master multiple tasks, including query generation, retrieved information understanding, and answer generation. Therefore, we propose incorporating a pre-trained squeezer model that helps the search agent understand the retrieved documents, allowing the search agent to focus on query generation for high retrieval recall. With the assistance of the squeezer model, we discover that even a small-scale 3B LLM can demonstrate a strong capability of query expansion and achieve state-of-the-art accuracy on the multi-hop QA benchmarks. To be specific, our experiments across seven question-answering benchmarks demonstrate that our method, named ExpandSearch, achieves an average improvement of 4.4% compared to state-of-the-art baselines, with strong gains on multi-hop reasoning tasks requiring diverse evidence aggregation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 17 likes about this paper.