Papers
Topics
Authors
Recent
2000 character limit reached

MTP-S2UT: Enhancing Speech-to-Speech Translation Quality with Multi-token Prediction (2510.10003v1)

Published 11 Oct 2025 in cs.CL, cs.SD, and eess.AS

Abstract: Current direct speech-to-speech translation methods predominantly employ speech tokens as intermediate representations. However, a single speech token is not dense in semantics, so we generally need multiple tokens to express a complete semantic unit. To address this limitation, we introduce multi-token prediction (MTP) loss into speech-to-unit translation (S2UT) models, enabling models to predict multiple subsequent tokens at each position, thereby capturing more complete semantics and enhancing information density per position. Initial MTP implementations apply the loss at the final layer, which improves output representation but initiates information enrichment too late. We hypothesize that advancing the information enrichment process to intermediate layers can achieve earlier and more effective enhancement of hidden representation. Consequently, we propose MTP-S2UT loss, applying MTP loss to hidden representation where CTC loss is computed. Experiments demonstrate that all MTP loss variants consistently improve the quality of S2UT translation, with MTP-S2UT achieving the best performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.