Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FORM: Fixed-Lag Odometry with Reparative Mapping utilizing Rotating LiDAR Sensors (2510.09966v1)

Published 11 Oct 2025 in cs.RO

Abstract: Light Detection and Ranging (LiDAR) sensors have become a de-facto sensor for many robot state estimation tasks, spurring development of many LiDAR Odometry (LO) methods in recent years. While some smoothing-based LO methods have been proposed, most require matching against multiple scans, resulting in sub-real-time performance. Due to this, most prior works estimate a single state at a time and are ``submap''-based. This architecture propagates any error in pose estimation to the fixed submap and can cause jittery trajectories and degrade future registrations. We propose Fixed-Lag Odometry with Reparative Mapping (FORM), a LO method that performs smoothing over a densely connected factor graph while utilizing a single iterative map for matching. This allows for both real-time performance and active correction of the local map as pose estimates are further refined. We evaluate on a wide variety of datasets to show that FORM is robust, accurate, real-time, and provides smooth trajectory estimates when compared to prior state-of-the-art LO methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.