Conformal Sparsification for Bandwidth-Efficient Edge-Cloud Speculative Decoding (2510.09942v1)
Abstract: Edge-cloud speculative decoding (SD) accelerates inference by having a cloud-based LLM that verifies draft tokens generated by a resource-constrained small LLM (SLM) at the edge. A central bottleneck is the limited bandwidth of the edge-cloud link, which necessitates efficient compression of draft token distributions. We first derive an information-theoretic bound that decomposes the token rejection rate into contributions from SLM-LLM distribution mismatch and from quantization distortion. Guided by this analysis, we propose the Sparse Quantize-and-Sample SD (SQS-SD) framework, which exploits distributional sparsity through structured sparsification and lattice-based quantization. Within this framework, K-SQS applies fixed top-K truncation, while C-SQS adaptively adjusts the retained token set via online conformal prediction to ensure bounded deviation from the dense distribution. Empirical results confirm that both approaches improve end-to-end latency and rejection rates in complimentary operating regimes.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.