Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bluetooth Fingerprint Identification Under Domain Shift Through Transient Phase Derivative (2510.09940v1)

Published 11 Oct 2025 in eess.SP and cs.CR

Abstract: Deep learning-based radio frequency fingerprinting (RFFP) has become an enabling physical-layer security technology, allowing device identification and authentication through received RF signals. This technology, however, faces significant challenges when it comes to adapting to domain variations, such as time, location, environment, receiver and channel. For Bluetooth Low Energy (BLE) devices, addressing these challenges is particularly crucial due to the BLE protocol's frequency-hopping nature. In this work, and for the first time, we investigated the frequency hopping effect on RFFP of BLE devices, and proposed a novel, low-cost, domain-adaptive feature extraction method. Our approach improves the classification accuracy by up to 58\% across environments and up to 80\% across receivers compared to existing benchmarks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.