Papers
Topics
Authors
Recent
2000 character limit reached

Denoising Diffusion as a New Framework for Underwater Images

Published 11 Oct 2025 in cs.CV and cs.AI | (2510.09934v1)

Abstract: Underwater images play a crucial role in ocean research and marine environmental monitoring since they provide quality information about the ecosystem. However, the complex and remote nature of the environment results in poor image quality with issues such as low visibility, blurry textures, color distortion, and noise. In recent years, research in image enhancement has proven to be effective but also presents its own limitations, like poor generalization and heavy reliance on clean datasets. One of the challenges herein is the lack of diversity and the low quality of images included in these datasets. Also, most existing datasets consist only of monocular images, a fact that limits the representation of different lighting conditions and angles. In this paper, we propose a new plan of action to overcome these limitations. On one hand, we call for expanding the datasets using a denoising diffusion model to include a variety of image types such as stereo, wide-angled, macro, and close-up images. On the other hand, we recommend enhancing the images using Controlnet to evaluate and increase the quality of the corresponding datasets, and hence improve the study of the marine ecosystem. Tags - Underwater Images, Denoising Diffusion, Marine ecosystem, Controlnet

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.