Papers
Topics
Authors
Recent
2000 character limit reached

An uncertainty-aware framework for data-efficient multi-view animal pose estimation (2510.09903v1)

Published 10 Oct 2025 in cs.CV and q-bio.QM

Abstract: Multi-view pose estimation is essential for quantifying animal behavior in scientific research, yet current methods struggle to achieve accurate tracking with limited labeled data and suffer from poor uncertainty estimates. We address these challenges with a comprehensive framework combining novel training and post-processing techniques, and a model distillation procedure that leverages the strengths of these techniques to produce a more efficient and effective pose estimator. Our multi-view transformer (MVT) utilizes pretrained backbones and enables simultaneous processing of information across all views, while a novel patch masking scheme learns robust cross-view correspondences without camera calibration. For calibrated setups, we incorporate geometric consistency through 3D augmentation and a triangulation loss. We extend the existing Ensemble Kalman Smoother (EKS) post-processor to the nonlinear case and enhance uncertainty quantification via a variance inflation technique. Finally, to leverage the scaling properties of the MVT, we design a distillation procedure that exploits improved EKS predictions and uncertainty estimates to generate high-quality pseudo-labels, thereby reducing dependence on manual labels. Our framework components consistently outperform existing methods across three diverse animal species (flies, mice, chickadees), with each component contributing complementary benefits. The result is a practical, uncertainty-aware system for reliable pose estimation that enables downstream behavioral analyses under real-world data constraints.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.