Papers
Topics
Authors
Recent
2000 character limit reached

Latent-Feature-Informed Neural ODE Modeling for Lightweight Stability Evaluation of Black-box Grid-Tied Inverters

Published 10 Oct 2025 in eess.SY and cs.SY | (2510.09826v1)

Abstract: Stability evaluation of black-box grid-tied inverters is vital for grid reliability, yet identification techniques are both data-hungry and blocked by proprietary internals. {To solve this, this letter proposes a latent-feature-informed neural ordinary differential equation (LFI-NODE) modeling method that can achieve lightweight stability evaluation directly from trajectory data.} LFI-NODE parameterizes the entire system ODE with a single continuous-time neural network, allowing each new sample to refine a unified global model. It faithfully captures nonlinear large-signal dynamics to preserve uniform predictive accuracy as the inverter transitions between operating points. Meanwhile, latent perturbation features distilled from every trajectory steer the learning process and concurrently reveal the small-signal eigenstructure essential for rigorous stability analysis. Validated on a grid-forming inverter, {The LFI-NODE requires one to two orders of magnitude fewer training samples compared with traditional methods, collected from short time-domain trajectories instead of extensive frequency-domain measurements.} {Furthermore, the LFI-NODE requires only 48 short transients to achieve a trajectory prediction error at the hundredth level and an eigenvalue estimation error at the tenth level, outperforming benchmark methods by one to two orders of magnitude.} This makes LFI-NODE a practical and lightweight approach for achieving high-fidelity stability assessment of complex black-box power-electronic systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.