Papers
Topics
Authors
Recent
2000 character limit reached

Task-Aware Resolution Optimization for Visual Large Language Models (2510.09822v1)

Published 10 Oct 2025 in cs.CV and cs.CL

Abstract: Real-world vision-language applications demand varying levels of perceptual granularity. However, most existing visual LLMs (VLLMs), such as LLaVA, pre-assume a fixed resolution for downstream tasks, which leads to subpar performance. To address this problem, we first conduct a comprehensive and pioneering investigation into the resolution preferences of different vision-language tasks, revealing a correlation between resolution preferences with image complexity, and uncertainty variance of the VLLM at different image input resolutions. Building on this insight, we propose an empirical formula to determine the optimal resolution for a given vision-language task, combining these two factors. Second, based on rigorous experiments, we propose a novel parameter-efficient fine-tuning technique to extend the visual input resolution of pre-trained VLLMs to the identified optimal resolution. Extensive experiments on various vision-language tasks validate the effectiveness of our method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.