Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Assessment of different loss functions for fitting equivalent circuit models to electrochemical impedance spectroscopy data (2510.09662v1)

Published 7 Oct 2025 in cs.LG and cond-mat.mtrl-sci

Abstract: Electrochemical impedance spectroscopy (EIS) data is typically modeled using an equivalent circuit model (ECM), with parameters obtained by minimizing a loss function via nonlinear least squares fitting. This paper introduces two new loss functions, log-B and log-BW, derived from the Bode representation of EIS. Using a large dataset of generated EIS data, the performance of proposed loss functions was evaluated alongside existing ones in terms of R2 scores, chi-squared, computational efficiency, and the mean absolute percentage error (MAPE) between the predicted component values and the original values. Statistical comparisons revealed that the choice of loss function impacts convergence, computational efficiency, quality of fit, and MAPE. Our analysis showed that X2 loss function (squared sum of residuals with proportional weighting) achieved the highest performance across multiple quality of fit metrics, making it the preferred choice when the quality of fit is the primary goal. On the other hand, log-B offered a slightly lower quality of fit while being approximately 1.4 times faster and producing lower MAPE for most circuit components, making log-B as a strong alternative. This is a critical factor for large-scale least squares fitting in data-driven applications, such as training machine learning models on extensive datasets or iterations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: