Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Weight-based Temporal Aggregation for Low-light Video Enhancement

Published 10 Oct 2025 in cs.CV | (2510.09450v1)

Abstract: Low-light video enhancement (LLVE) is challenging due to noise, low contrast, and color degradations. Learning-based approaches offer fast inference but still struggle with heavy noise in real low-light scenes, primarily due to limitations in effectively leveraging temporal information. In this paper, we address this issue with DWTA-Net, a novel two-stage framework that jointly exploits short- and long-term temporal cues. Stage I employs Visual State-Space blocks for multi-frame alignment, recovering brightness, color, and structure with local consistency. Stage II introduces a recurrent refinement module with dynamic weight-based temporal aggregation guided by optical flow, adaptively balancing static and dynamic regions. A texture-adaptive loss further preserves fine details while promoting smoothness in flat areas. Experiments on real-world low-light videos show that DWTA-Net effectively suppresses noise and artifacts, delivering superior visual quality compared with state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.