Bridging Research and Practice in Simulation-based Testing of Industrial Robot Navigation Systems (2510.09396v1)
Abstract: Ensuring robust robotic navigation in dynamic environments is a key challenge, as traditional testing methods often struggle to cover the full spectrum of operational requirements. This paper presents the industrial adoption of Surrealist, a simulation-based test generation framework originally for UAVs, now applied to the ANYmal quadrupedal robot for industrial inspection. Our method uses a search-based algorithm to automatically generate challenging obstacle avoidance scenarios, uncovering failures often missed by manual testing. In a pilot phase, generated test suites revealed critical weaknesses in one experimental algorithm (40.3% success rate) and served as an effective benchmark to prove the superior robustness of another (71.2% success rate). The framework was then integrated into the ANYbotics workflow for a six-month industrial evaluation, where it was used to test five proprietary algorithms. A formal survey confirmed its value, showing it enhances the development process, uncovers critical failures, provides objective benchmarks, and strengthens the overall verification pipeline.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.