Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Utilizing dynamic sparsity on pretrained DETR (2510.09380v1)

Published 10 Oct 2025 in cs.CV

Abstract: Efficient inference with transformer-based models remains a challenge, especially in vision tasks like object detection. We analyze the inherent sparsity in the MLP layers of DETR and introduce two methods to exploit it without retraining. First, we propose Static Indicator-Based Sparsification (SIBS), a heuristic method that predicts neuron inactivity based on fixed activation patterns. While simple, SIBS offers limited gains due to the input-dependent nature of sparsity. To address this, we introduce Micro-Gated Sparsification (MGS), a lightweight gating mechanism trained on top of a pretrained DETR. MGS predicts dynamic sparsity using a small linear layer and achieves up to 85 to 95% activation sparsity. Experiments on the COCO dataset show that MGS maintains or even improves performance while significantly reducing computation. Our method offers a practical, input-adaptive approach to sparsification, enabling efficient deployment of pretrained vision transformers without full model retraining.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

alphaXiv

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube